BCC 2D Particles

BCC Particles

The BCC 2D Particles filter breaks the source image into particles and disperses them in 2D space. This filter also provides a variety of explosion, velocity, and gravity controls to adjust the particles movement. You can also control the size, shape, density, and opacity of the particles, and create custom particle shapes and scatter wipes. Use the auto-animation feature to easily generate explosion effects, or animate the filter manually for precise control.

Transition Tip:  While most Continuum transitions automatically conform to the duration of the transition, Continuum 2D Particles has special requirements when applied as a transition.  Due to the great complexity and randomized motion of the particle simulation which underlies this effect it is impossible for Continuum 2D Particles to automatically adjust its timing to ensure that the transition fully completes by the end of the host transition point.  When used as a transition it is frequently necessary to manually adjust parameters such as the Speed, Gravity, and/or the Automate:Manual+Scatter controls in order to tweak the overall timing of the effect and thus ensure it completes on time.

particles.before particles.after
Source Image Filtered Image

Function

Presets and Common Controls

Continuum filters come with a library of factory installed presets plus the ability to create your own custom presets and preview them  with the BCC FX Browser™.

Continuum filters also include common controls that configure global effect preferences and other host-specific effect settings.

For more information about working with presets and other common controls, Click Here.

Scatter (initial): determines the initial position of the scattered image. At the default of 0, the image appears as if it is not initially scattered, which is ideal for creating transitions from one image to another. Negative Scatter values do not scatter the image, but are useful if you animate Scatter and want the image unaffected for a longer period of time. This parameter only applies when the Automate Scatter menu is set to Manual.

particles.scatter.0 particles.scatter.50 particles.scatter.200
Scatter=0 Scatter=50 Scatter=200

Automate Scatter: controls the speed and direction in which the filter auto- animates. The choices are Manual; Fast, Medium, or Slow Forward; and Fast, Medium, or Slow Reverse. The Forward options create an effect that shatters the initial image and disperses it, revealing a new image; whereas the Reverse options cause pieces to fly onto the screen to form the transition image. For more precise control over the animation of the effect, choose Manual. This allows you to use the Scatter setting as your time value directly, and animate it forwards, backwards, or both using keyframes.

Particle X: provides a multiplication factor for Grid Spacing that determines the order of magnitude of the grid spacing. For example, if Grid Spacing is set to 15 and Particle X is set to 100, the image breaks into 1500 particles. As the number of particles increases, the size of each individual particle decreases.

particleX.1 particleX.10 particleX.100
Particle X=1 Particle X=10 Particle X=100

Warning: Rendering time is directly proportional to the number of particles. If you use a high Particle X value, work in Draft Mode to speed your previews.

Explosion Type: controls the animation style of the explosion.

  • Burst creates a fast initial burst, then particles slow down.
  • Soft Burst creates a slower initial burst, then particles slow down.
  • Constant causes particles to disperse at a constant speed.
  • Soft Acceleration causes particles to move slowly at first, then gradually accelerate.
  • Acceleration causes particles to move slowly at first, then quickly accelerate.

Speed: determines the velocity of the particles.

Custom Shape Parameter Group

The controls in this group allow you to choose a particle shape by using the alpha or color information from another layer in your timeline to create a custom shape.

Shape Image: chooses the layer in the timeline used to create the custom shape.

Shape Use: determines how the Shape Image layer media is used to create the shape. Choose Alpha, Inverted Alpha, Color, Inverted Color, or Source. Alpha and Inverted Alpha use the alpha channel information to determine the particle shape. Color and Inverted Color use the color information to determine the particle shape. Source produces particles that are small copies of the original image.

particles.alpha particles.alpha.inverse
Shape Use=Alpha Shape Use=Inverted Alpha

Shape Size: determines how the Shape Image media is scaled in creating the particles. Larger means that the custom shape size is greater than or equal to the original particle size, Smaller means that it is less than or equal to the original particle size, and Conform to Particle means it is scaled to the size of the original Shape Image media from which the particles are made.

Shape Transformation: is a manually animatable choking control that transforms each particle into a rectangle. At a Shape Transformation value of 0, the particles are unaffected and conform to the custom shape. At a value of 100, the particles are completely rectangular. This parameter is useful for creating smooth transitions in which the original image splits into rectangles which then transform into the custom shape. In the examples below, the custom shape is a circle, and the image is unscattered.

particles.transform1 particles.transform4 particles.transform3
Shape Transformation=0 Shape Transformation=10 Shape Transformation=25

When the Save Unscattered checkbox is selected, unscattered particles do not break up the image when using custom shapes.

Shape Type: sets how the animation of the Shape Image affects the particle shape.

  • When Animate Shape is chosen, the custom shape animates along with the source Shape Image layer.
  • Random Frames chooses the first few frames of the custom shape image and randomly distributes those shapes among the particles. When Random Frames is chosen, Shape Frame Count determines the number of frames selected from the Shape Image layer. Shape Random Seed sets which value is input to the random number generator used by the filter to determine which Shape Image layer frame is used for each output frame.

Resample Quality: used to maximize the quality and/or minimize the render time and memory requirement of custom shape effects. Resample Quality places a limit on how large the particles become before losing quality. A setting of 10 means particles can become as large as the original custom shape image, and 5 means they can become half as large.

  • Note: If your particles are relatively small, you can use a fairly low Resample Quality value without a noticeable loss of image quality while significantly decreasing rendering time.

If you select the Optimize Resample checkbox, the filter automatically performs Resample Quality adjustments for you.

Scatter Wipe Parameter Group

The Scatter Wipe parameters allow you to shatter images in a wipe-like fashion, and to control the rate and direction in which particles break off and disperse. You can either wipe the particles in a single direction or use a custom gradient to determine how the image breaks into particles.

Scatter Wipe: choose between Off, On, Pass Through and Random.

  • With Off chosen, no wipe takes place (unless you set up a Custom Gradient).
  • With On chosen, the particles wipe across in the pattern designated by the Wipe Custom Gradient (see below).
  • Pass Through is similar to On, except that the particles begin at a negative Scatter value rather than a value of 0. Particles come together along the edge of the wipe, then fall apart again as the wipe passes across the screen. This creates an effect which looks like a line that forms and dissipates the image as the line moves across the screen.
  • With Random Wipe chosen, the particles break off randomly across the screen.

Wipe Custom Gradient: allows you to choose a layer in your timeline to use as the wipe gradient. Regions in the image corresponding to the darkest areas in the gradient break up first, followed by increasingly lighter areas. If None is chosen, the wipe moves across the screen in a straight line. The direction of the line is determined by Wipe Angle.

Invert Gradient checkbox: inverts the luma or alpha values in the custom wipe gradient, thereby reversing the scatter wipe pattern.

Wipe Speed: adjusts the speed of the wipe by determining the Scatter value at which the whole image is broken in particles. For a faster wipe, decrease Wipe Speed. For a more gradual wipe, increase Wipe Speed.

  • Regardless of the particles’ Speed setting, a low Wipe Speed value wipes the image quickly, and a high Wipe Speed value wipes the image slowly. With high-speed particles and a low-speed wipe, the image unravels slowly, but each particle flies away from the image extremely quickly. With slow particles and a fast wipe, the image breaks up quickly, but the particles then slowly drift off the screen.

Move Parameter Group

The Move parameters adjust the particles’ movement.

Velocity Type: determines which movement pattern the particles follow.

  • Random moves the particles in random directions as they disperse.
  • Straight moves the particles in a straight line. Use the Velocity Angle control to set the angle between this line and the horizontal axis.
  • Centripetal moves the particles toward the center point. Use the Center of Velocity position controls to set the center point.
  • Centrifugal moves the particles away from the center point. Use the Center of Velocity position controls to set the center point.
  • Spiral CW moves the particles in a clockwise spiral around the center point. Use the Center of Velocity position controls to set the center point.
  • Spiral CCW moves the particles in a counter-clockwise spiral around the center point. Use the Center of Velocity position controls to set the center point.
particles.spiral particles.centripetal
Velocity Type=Spiral CW Velocity Type=Centripetal

Variance: determines the range of different particle speeds that can appear in the effect. A Variance of 0 synchronizes all of the particles. A larger Variance value increasingly randomizes particle speeds.

Adjustment: behaves differently depending on which Velocity Type you are using.

  • In Random and Straight modes, Adjustment works as a variance control on the particle direction. By animating Adjustment, you can make the particles swerve or change course.
  • In Spiral CW and Spiral CCW modes, Adjustment determines the strength of the spiral, increasing this value makes the particles spiral much faster, while decreasing this value makes them spiral more slowly
  • In Centripetal And Centrifugal modes, Adjustment has no affect.

Center of Velocity: sets the horizontal and vertical coordinates of the center point from, toward, or around which the particles move when Velocity Type is set to Centripetal, Centrifugal, Spiral CW, or Spiral CCW.

Velocity Radius: sets the radius of the particle system when Velocity Type is set to Centripetal, Centrifugal, Spiral CW, or Spiral CCW.

When Velocity Type is set to Centripetal, the Stop at Center checkbox determines what happens when particles reach the center point. If Stop at Center is selected, particles move into the center of the image and disappear when they reach the center point. If this option is deselected, the particles pass through the Center and continue moving through to the back side, creating an implosion effect.

Gravity Parameter Group

The Gravity controls apply a simulated gravitational force to the velocity of the particles.

Gravity: applies a secondary force to the particles’ movement in addition to their normal velocities. A small amount of Gravity can often help make an effect look more natural by creating more parabolic movement.

Gravity Type: is similar to Velocity Type except that Gravity is applied as acceleration rather than as direct movement.

  • Random applies a random gravitational pull to the particles.
  • Straight is the most “natural” type of gravity because it exerts a straight downward pull on the particles. You can pull the gravity in any direction by adjusting the Gravity Angle control, which can be used to simulate wind.
  • Centripetal applies gravity that pulls particles away from the point defined by the Center of Gravity position controls*.*
  • Centrifugal pulls particles away from the point defined by Center of Gravity*.*

Options Parameter Group

The Options parameters affect particle density, position, size and behavior.

Grid Spacing: works in conjunction with Particle X to determine the number of particles created from the image. Higher values make the grid resolution greater, generating a larger number of smaller particles; while lower values generate a smaller number of larger particles. The Grid Spacing value is multiplied by the Particle X value to determine the total number of particles.

Density: controls the density of the particles in relation to each other. Low Density values spread the particles farther apart; high values pack the particles more closely together.

Position Variance: varies the positions of each particle. Increase this setting to create a more random particle arrangement.

  • Note: At any Position Variance value greater than 0, the unscattered image has some scattered particles, creating holes in the source image. Animate Position Variance along with Scatter to avoid this problem.

Size: adjusts the size of the particles without affecting the grid spacing or the number of particles. At the default setting of 100, the image splits into the number of particles determined by the Particle X and Grid Spacing settings. If you increase Size, each particle maintains its original position in the grid but increases in size, so that the image fragments overlap in the unscattered image. Conversely, if you decrease Size, the unscattered particles maintain their positions but do not fill the screen.

particles.size.50 particles.size.100 particles.size.150
Size=50 Size=100 Size=125

Size Variance: varies the size of the particles by scaling them to 100% of their original size plus the Size Variance value. For example, the default setting of 0 creates particles that are 100% of their original size (that is, the particle size does not change). A Size Variance of 50 produces particles that range up to 150% of their original size, and a value of –50 creates particles that range down to 50% of their original size.

XY Ratio: determines the aspect ratio of the particle grid. Setting this parameter to a positive value creates tall thin particles, while negative values create wide flat particles.

particles.XY.positive particles.XY.negative
XY Ratio=10,000 XY Ratio= -10,000

Opacity: scales the transparency level of all the particles.

Opacity Variance: varies the opacity of the particles. If you want the particles to change from completely opaque to completely transparent as the effect progresses, animate Opacity from 100 to 0, and set Opacity Variance to 0. If Opacity Variance is set to any value other than 0, some visible particles are at an Opacity value of 0, and some particles are transparent at an Opacity value of 100.

Process Channels: determines which channels in the source image are processed. The default setting, All, processes all four channels. You can also choose to process Alpha Only, Red Only, Green Only, or Blue Only.

When you apply a filter to a layer that is composited on top of a larger layer, the edge of the effect will be clipped to the size of the smaller layer (i.e. the one that it is applied to). If you want the effect to go beyond the boundaries of the layer it is applied to (as you may for particle effects), you need to use the Expand Clipping menu to expand the clipped region

When the Keep Original checkbox is selected, the original image appears behind the particles so that they reveal the image behind them, rather than creating an alpha channel.

2dparticle.keeporiginal.off 2dparticles.keeporiginal.on
Keep Original Off Keep Original On

Random Seed: determines which value is input to the random number generator used by the filter. Adjust this value when you like the overall effect but want to alter the random configuration of the particles.

Frame Size: scales the entire effect toward or away from the velocity center point. This is useful for making sure that all the particles are visible within a given frame.

particles.framesize100 particles.framesize50
Frame Size=100 Frame Size=50

The Z-Order menu determines where in space the particles fall away.

  • Normal causes particles that break up first to fall in front of the rest of the image.
  • Reversed causes these particles to fall behind the rest of the image.
  • Random creates effects in which the particles randomly fall in front of or behind the other particles.

Select the Wall Bounce checkbox to prevent particles from leaving the frame. Particles that approach the edges of the frame “bounce” and continue to drift.

Parameters such as Size and Position Variance affect the initial (unscattered) image. Parameter Suppression allows you to animate all these parameters at once. To animate from an unscattered image to a scattered image that uses these parameters, set a keyframe with a Parameter Suppression value of 100 at the start of the effect, and animate the value to 0. This suppresses the parameters that affect the unscattered image at the start of the effect.

Beat Reactor

The Continuum Beat Reactor is an animation control suite which drives effect properties based on the contents of an audio track. This lets you seamlessly tie visual FX to an audio soundtrack without the need for ANY manual keyframing.

For more information on the Beat Reactor, Click Here.


Category:

BCC Film Style

BCC Particles

BCC Color & Tone

BCC Perspective

BCC Perspective

BCC Licensing

BCC Obsolete

BCC Key & Blend

BCC Obsolete

Nested Subgroup

BCC Art Looks

BCC Licensing

BCC Time

Nested Subgroup

BCC Image Restoration

BCC Transitions

BCC Blur & Sharpen

BCC Transitions

BCC Obsolete

BCC Textures

BCC Color & Tone

BCC Image Restoration

BCC Warp

BCC Art Looks

BCC Transitions

BCC Art Looks

BCC Art Looks

BCC Stylize

BCC Textures

BCC Art Looks

BCC Transitions

BCC Key & Blend

BCC Key & Blend

BCC Textures

BCC Textures

BCC Color & Tone

BCC Stylize

BCC Color & Tone

BCC Color & Tone

BCC Obsolete

BCC Color & Tone

BCC Stylize

BCC Transitions

BCC Particles

Uncategorized

Uncategorized

Nested Subgroup

BCC Key & Blend

BCC Key & Blend

BCC Transitions

BCC Match Move

BCC Match Move

BCC Color & Tone

BCC Transitions

BCC Transitions

BCC Transitions

BCC Transitions

BCC Transitions

BCC Perspective

BCC Warp

BCC Transitions

BCC Perspective

BCC Stylize

BCC Transitions

BCC Obsolete

BCC Film Style

BCC Obsolete

BCC Blur & Sharpen

BCC Warp

BCC Stylize

BCC Image Restoration

BCC Image Restoration

BCC Image Restoration

BCC Perspective

BCC Perspective

BCC Key & Blend

BCC Stylize

BCC Lights

Uncategorized

BCC Stylize

BCC 3D Objects

BCC 3D Objects

BCC 3D Objects

BCC Film Style

BCC Transitions

BCC Film Style

BCC Perspective

BCC Blur & Sharpen

BCC Film Style

BCC Obsolete

BCC Obsolete

BCC Film Style

BCC Obsolete

BCC Obsolete

BCC Image Restoration

BCC Transitions

BCC Textures

BCC Browser

BCC Blur & Sharpen

BCC Lights

BCC Lights

BCC Lights

BCC Stylize

BCC Obsolete

Nested Subgroup

BCC Textures

BCC Transitions

BCC Stylize

BCC Art Looks

BCC Color & Tone

BCC Color & Tone

BCC Time

BCC Time

BCC Transitions

BCC Lights

BCC 3D Objects

BCC Stylize

BCC Obsolete

BCC Transitions

BCC Image Restoration

BCC Transitions

BCC Lights

BCC Obsolete

BCC Transitions

BCC Transitions

BCC Transitions

BCC Transitions

BCC Blur & Sharpen

BCC Obsolete

BCC Color & Tone

BCC Lights

BCC Transitions

BCC Obsolete

BCC Lights

BCC Transitions

BCC Key & Blend

BCC Obsolete

BCC Lights

BCC Key & Blend

BCC Key & Blend

BCC Transitions

BCC Time

BCC Image Restoration

BCC Key & Blend

BCC Film Style

BCC Match Move

BCC Key & Blend

BCC Key & Blend

BCC Art Looks

BCC Stylize

BCC Textures

BCC Warp

BCC Stylize

BCC Blur & Sharpen

BCC Image Restoration

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

Nested Subgroup

BCC Stylize

BCC Transitions

BCC Transitions

BCC Color & Tone

BCC Obsolete

BCC Textures

BCC Image Restoration

BCC Time

BCC Image Restoration

BCC Particles

Uncategorized

Uncategorized

Uncategorized

Uncategorized

BCC Perspective

BCC Perspective

BCC Particles

BCC Particles

BCC Particles

BCC Transitions

BCC Particles

BCC Art Looks

BCC Particles

Nested Subgroup

Nested Subgroup

BCC Image Restoration

Nested Subgroup

BCC Warp

BCC Art Looks

BCC Time

BCC Key & Blend

BCC Key & Blend

BCC Stylize

BCC Transitions

BCC Blur & Sharpen

BCC Blur & Sharpen

BCC Transitions

BCC Particles

BCC Lights

BCC Transitions

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Lights

BCC Transitions

BCC Stylize

BCC Image Restoration

BCC Image Restoration

BCC Textures

BCC Lights

BCC Key & Blend

BCC Transitions

BCC Transitions

BCC Stylize

BCC Stylize

BCC Transitions

BCC Transitions

BCC Warp

BCC Transitions

BCC Textures

BCC Obsolete

BCC Color & Tone

BCC Stylize

BCC Stylize

BCC Obsolete

BCC Image Restoration

BCC Particles

BCC Particles

BCC Perspective

BCC Transitions

BCC Key & Blend

BCC Transitions

BCC Blur & Sharpen

BCC Lights

BCC Art Looks

BCC Lights

BCC Obsolete

BCC Textures

BCC Textures

BCC Obsolete

BCC Transitions

BCC Time

BCC Transitions

BCC Art Looks

BCC Transitions

BCC Time

BCC 3D Objects

BCC Time

BCC Time

BCC Color & Tone

BCC Transitions

BCC Warp

BCC Warp

BCC Transitions

BCC Film Style

BCC Key & Blend

BCC 3D Objects

BCC Blur & Sharpen

BCC Image Restoration

Uncategorized

BCC Transitions

BCC Warp

BCC Textures

BCC Time

BCC Stylize

BCC Warp

BCC Color & Tone

BCC Film Style

BCC Transitions

BCC VR

BCC VR

BCC VR

BCC VR

BCC VR

BCC Warp

BCC Art Looks

BCC Transitions

BCC Warp

BCC Textures

BCC Particles

BCC Image Restoration

BCC Match Move

BCC Textures

BCC Textures

BCC Obsolete

BCC Obsolete

BCC Obsolete

BCC Blur & Sharpen

BCC Image Restoration

BCC Blur & Sharpen

BCC Transitions

BCC Blur & Sharpen

BCC Transitions

BCC Blur & Sharpen

BCC Key & Blend

BCC Transitions

BCC Transitions

BCC Blur & Sharpen

BCC Transitions

BCC Transitions

BCC Color & Tone

BCC Film Style

BCC Transitions

BCC Film Style

BCC Film Style

BCC Color & Tone

BCC Color & Tone

BCC Lights

BCC Transitions

BCC Image Restoration

BCC Transitions

BCC Stylize

BCC Transitions

BCC Transitions

BCC Blur & Sharpen

BCC Transitions

BCC Blur & Sharpen

BCC Transitions

BCC Film Style

BCC Stylize

BCC Lens

BCC Lights

BCC Color & Tone

BCC Film Style

BCC Art Looks

BCC Lens

BCC Optical Diffusion

BCC Lights

BCC Lens

BCC Grads and Tints

BCC Art Looks

BCC Key & Blend

BCC Art Looks

BCC Grads and Tints

BCC Grads and Tints

BCC Film Style

BCC Film Style

BCC Image Restoration

BCC Image Restoration

BCC Color & Tone

BCC Lens

BCC Optical Diffusion

BCC Blur & Sharpen

BCC Color & Tone

BCC Optical Diffusion

BCC Optical Diffusion

BCC Grads and Tints

BCC Key & Blend

BCC Color & Tone

BCC Lights

BCC Film Style

BCC Optical Diffusion

BCC Optical Diffusion

BCC Grads and Tints

BCC Lights

BCC Lights

BCC Lights

BCC Color & Tone

BCC Optical Diffusion

BCC Art Looks

BCC Color & Tone

BCC Key & Blend

BCC Lights

BCC Art Looks

BCC Color & Tone

BCC Lights

BCC Lens

BCC Lights

BCC Lights

BCC Film Style

BCC Color & Tone

BCC Key & Blend

BCC Optical Diffusion

BCC Grads and Tints

BCC Optical Diffusion

BCC Art Looks

BCC Key & Blend

BCC Key & Blend

BCC Lights

BCC Grads and Tints

BCC Color & Tone

BCC Optical Diffusion

BCC Lens

BCC Grads and Tints

BCC Lights

BCC Lights

BCC Lights

BCC Color & Tone

BCC Grads and Tints

BCC Color & Tone

BCC Optical Diffusion

BCC Grads and Tints

BCC Optical Diffusion

BCC Grads and Tints

BCC Lights

BCC Grads and Tints

BCC Textures

BCC Film Style

BCC Grads and Tints

BCC Perspective

BCC Transitions

BCC Lens

BCC Art Looks

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

BCC 3D Objects

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Tutorial

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Tutorial

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Title Studio

Tutorial

Effect:
BCC+X-Ray
BCC+Wide Angle Lens
BCC+Video Glitch Dissolve
BCC+Transform
BCC+Tint
BCC+Three Strip
BCC+Textures
BCC+Sunset
BCC+Streaks
BCC+Split Tone
BCC+Split Field
BCC+Skin Tone
BCC+Silk
BCC+Shadows/Highlights
BCC+Sepia
BCC+Selective Saturation
BCC+ReLight
BCC+Reflector
BCC+Rays
BCC+Radial Tint
BCC+Radial Exposure
BCC+Rack Focus
BCC+Polarizer
BCC+Photographic
BCC+Overexpose
BCC+Optical Dissolve
BCC+Non-Additive Mix
BCC+Night Vision
BCC+Net
BCC+ND Gradient
BCC+Mist
BCC+Math Composite
BCC+Low Contrast
BCC+Looks
BCC+Light
BCC+Lens Flare
BCC+Lens Distortion
BCC+Key Light
BCC+Kelvin
BCC+Infrared
BCC+Ice Halos
BCC+Holdout Composite
BCC+High Contrast
BCC+Harris Shutter
BCC+Halo
BCC+Grade
BCC+Glow Edges
BCC+Glow Darks
BCC+Glow
BCC+Gels
BCC+FX-Editor
BCC+Frost
BCC+Fog
BCC+Film Stocks
BCC+Eye Light
BCC+Enhancing
BCC+Edge Composite
BCC+Dual Gradient
BCC+Double Fog
BCC+Diffusion
BCC+Develop
BCC+Detail
BCC+Depth of Field
BCC+DeFringe
BCC+Defog
BCC+DeBlock
BCC+DeBand
BCC+Day for Night
BCC+Cross Processing
BCC+Colorize Gradient
BCC+Color Spot
BCC+Color Shadow
BCC+Color Paste
BCC+Color Infrared
BCC+Color Gradient
BCC+Chromatic Aberration
BCC+Chroma Bands
BCC+Center Spot
BCC+Camera Shake
BCC+Borders
BCC+Bleach Bypass
BCC+Black and White
BCC+Ambient Light
BCC+ Vignette
BCC+ Video Glitch
BCC+ Two Strip
BCC+ Spin Blur Dissolve
BCC+ Smear Blur
BCC+ Rays Dissolve
BCC+ Radial Blur
BCC+ Rack Focus Dissolve
BCC+ Prism Dissolve
BCC+ Prism
BCC+ Multi-Star Dissolve
BCC+ Magic Sharp
BCC+ Light Leaks Dissolve
BCC+ Light Leaks
BCC+ Haze
BCC+ Fluorescent
BCC+ Flashing
BCC+ Film Grunge
BCC+ Film Glow Dissolve
BCC+ Film Glow
BCC+ F-Stop
BCC+ Dissolve
BCC+ Directional Blur Dissolve
BCC+ Directional Blur
BCC+ Cross Zoom Dissolve
BCC+ Crash Zoom Dissolve
BCC+ Composite
BCC+ Channel Blur YUV
BCC+ Channel Blur Dissolve
BCC+ Channel Blur
BCC+ Camera Shake Dissolve
BCC+ Blur
BCC+ Beauty Studio
BCC Z-Blur
BCC Z Space III
BCC Z Space II
BCC Z Space I
BCC Wooden Planks
BCC Wood Grain
BCC WitnessProtection
BCC Wire Remover
BCC Wild Cards
BCC Weave
BCC Wave
BCC Water Waves Dissolve
BCC Water Color
BCC Warp
BCC VR Sharpen
BCC VR Reorient
BCC VR Insert
BCC VR Flicker Fixer
BCC VR Blur
BCC Vignette Wipe
BCC Vignette
BCC VideoScope
BCC Video Morph
BCC Video Glitch
BCC Velocity Remap
BCC Veined Marble
BCC Vector Displacement
BCC Vector Blur Dissolve
BCC User Guide
BCC UpRez
BCC Unsharp Mask
BCC Type On Text
BCC Two Way Key
BCC Two Strip Color
BCC Twister
BCC Twirl
BCC Turbulence
BCC Tritone Dissolve
BCC Tritone
BCC Trails Basic
BCC Trails
BCC Title Studio
BCC Time Displacement
BCC Tile Wipe
BCC Tile Mosaic
BCC Textured Wipe
BCC Temporal Blur
BCC Swish Pan
BCC Super Blend
BCC Steel Plate
BCC Stars
BCC Star Matte
BCC Stage Light
BCC Spray Paint Noise
BCC Spotlight
BCC Spiral Blur
BCC Spin Blur Dissolve
BCC Spill Remover
BCC Sphere Transition
BCC Sphere
BCC Sparks
BCC Snow
BCC Smooth Tone
BCC Sequencer
BCC Scatterize
BCC Scanline
BCC Safe Colors
BCC Rough Glow
BCC Rock
BCC Ripple Dissolve
BCC Ripple
BCC Rings Wipe
BCC Ribbon Wipe
BCC RGB Pixel Noise
BCC RGB Edges
BCC RGB Displacement Dissolve
BCC RGB Blur Dissolve
BCC RGB Blend
BCC Reverse Spotlight
BCC Reptilian
BCC Remover
BCC Reframer
BCC Reflection
BCC Rectangular Wipe
BCC Rays Wedge
BCC Rays Textured
BCC Rays Streaky
BCC Rays Ripply
BCC Rays Ring
BCC Rays Radiant Spotlight
BCC Rays Radiant Edges
BCC Rays Puffy
BCC Rays Dissolve
BCC Rays Cartoon
BCC Rain
BCC Radial Wipe
BCC Radial Blur
BCC Pyramid Blur
BCC Prism Dissolve
BCC Prism
BCC Primatte Studio
BCC Presets
BCC Premult
BCC Preferences
BCC Posterize Time
BCC Posterize
BCC Polar Displacement
BCC PixelChooser – Legacy
BCC Pixel Fixer
BCC Pixel Chooser
BCC Pinning Controls
BCC Pin Art 3D
BCC Pencil Sketch
BCC Particle System
BCC Particle Illusion Dissolve
BCC Particle Illusion
BCC Particle Emitter 3D
BCC Particle Array 3D
BCC Pan And Zoom
BCC Page Turn
BCC Overview in Resolve
BCC Overview in FCP
BCC Overview in Avid
BCC Overview in Adobe
BCC Organic Strands
BCC Optical Stabilizer
BCC Optical Flow
BCC Noise Reduction
BCC Noise Map 2
BCC Noise Map
BCC MultiTone Mix
BCC Multi Stripe Wipe
BCC Multi Stretch Wipe
BCC Multi Shadow
BCC Motion Tracker Vegas
BCC Motion Tracker Resolve
BCC Motion Tracker Red
BCC Motion Tracker PRM
BCC Motion Tracker Motion
BCC Motion Tracker FCP
BCC Motion Tracker Avid
BCC Motion Tracker AE
BCC Motion Tracker
BCC Motion Key
BCC Motion Blur
BCC Mosaic
BCC Morph
BCC Mixed Colors
BCC Misalignment
BCC Median
BCC Matte Cleanup
BCC Matte Choker
BCC Match Move
BCC Match Grain
BCC Make Alpha Key
BCC Magic Sharp
BCC Looper
BCC Linear Wipe
BCC Linear Luma Key
BCC Linear Color Key
BCC Lightning
BCC Light Zoom
BCC Light Wrap
BCC Light Wipe
BCC Light Sweep
BCC Light Matte
BCC Light Leaks Dissolve
BCC Light Leaks
BCC Levels Gamma
BCC Lens Transition
BCC Lens Shape
BCC Lens Flash
BCC Lens Flare Spiked
BCC Lens Flare Round
BCC Lens Flare Dissolve
BCC Lens Flare Advanced
BCC Lens Flare 3D
BCC Lens Distortion Wipe
BCC Lens Correction
BCC Lens Blur Dissolve
BCC Lens Blur
BCC LED
BCC Layer Deformer
BCC Laser Beam
BCC Kaleida Dissolve
BCC Jitter Basic
BCC Jitter
BCC Invert Solarize
BCC Hue-Sat-Lightness
BCC Halftone
BCC Grunge
BCC Grid Wipe
BCC Granite
BCC Gradient
BCC Glow Matte
BCC Glow Alpha Edges
BCC Glitter
BCC Glint
BCC Glare
BCC Gaussian Blur
BCC FX Browser
BCC Fractal Noise
BCC Flutter Cut
BCC Flicker Fixer
BCC Fire
BCC Film Process
BCC Film Grain
BCC Film Glow Dissolve
BCC Film Glow
BCC Film Damage
BCC Fast Lens Blur
BCC Fast Flipper
BCC Fast Film Process
BCC Fast Film Glow Dissolve
BCC Fast Film Glow
BCC FAQ
BCC Extruded Text
BCC Extruded Spline
BCC Extruded EPS
BCC Emboss
BCC Effects List
BCC Edge Lighting
BCC Edge Grunge
BCC Edge Cleaner
BCC DVE Basic
BCC DVE
BCC Dv Fixer
BCC Dust and Scratches
BCC Dropout Fixer
BCC Drop Shadow
BCC Displacement Map
BCC Directional Blur
BCC DeNoise
BCC Deinterlace
BCC DeGrain
BCC Damaged TV Dissolve
BCC Damaged TV
BCC Cylinder
BCC Curl Dissolve
BCC Curl
BCC Cube
BCC Cross Zoom
BCC Cross Melt
BCC Cross Glitch
BCC Criss-Cross Wipe
BCC Crash Zoom Dissolve
BCC Correct Selected Color
BCC Corner Pin Studio
BCC Corner Pin
BCC Composite Dissolve
BCC Composite Choker
BCC Composite
BCC Compare Mode
BCC Common Controls - Avid
BCC Common Controls
BCC Comet
BCC Colorize Glow Dissolve
BCC Colorize Glow
BCC Colorize
BCC Color Palette
BCC Color Match
BCC Color Correction
BCC Color Choker
BCC Color Balance
BCC Clouds
BCC Cloth
BCC Chroma Key Studio
BCC Chroma Key
BCC Checker Wipe
BCC Charcoal Sketch
BCC Caustics
BCC Cast Shadow
BCC Cartooner
BCC Cartoon Look
BCC Burnt Film
BCC Bump Map
BCC Bulge
BCC Broadcast Safe
BCC Brightness-Contrast
BCC Brick
BCC Boost Blend
BCC Blur Dissolve
BCC Blur
BCC Blobs Wipe
BCC Beauty Studio
BCC Beat Reactor Integrated
BCC Beat Reactor
BCC AVX Licensing
BCC Artists Poster
BCC Apply Modes
BCC Alpha Spotlight
BCC Alpha Process
BCC Alpha Pixel Noise
BCC AE Licensing
BCC 3D Image Shatter
BCC 3D Extruded Image Shatter
BCC 3 Way Color Grade
BCC 2D Particles
BCC+ Atmospheric Glow